@香港大变天,李嘉誠反复发声,到底想表达什么

克莱因瓶是一个不可定向的二维紧流形,而球面或轮胎面是可克莱因瓶克莱因瓶定向的二维紧流形。

如果观察克莱因瓶,有一点似乎令人困惑--克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。

我们可以把克莱因瓶放在四维空间中理解:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面。

如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,把它表现得似乎是自己和自己相交一样。

克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。

用扭结来打比方,如果把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。

但其实很容易明白,这个图形其实是三维空间中的曲线。

它并不和自己相交,而是连续不断的一条曲线。

在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。

只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。

克莱因瓶也一样,我们可以把它理解成处于四维空间中的曲面。

在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好像最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。

有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

在二维看似穿过自身的绳子在二维看似穿过自身的绳子如果莫比乌斯带能够完美的展现一个 二维空间中一维可无限扩展之空间模型 的话,克莱因瓶只能作为展现一个 三维空间中二维可无限扩展之空间模型 的参考。

因为在制作莫比乌斯带的过程中,我们要对纸带进行180°翻转再首尾相连,这就是一个三维空间下的操作。

理想的 三维空间中二维可无限扩展之空间模型 应该是在二维面中,朝任意方向前进都可以回到原点的模型,而克莱因瓶虽然在二维面上可以向任意方向无限前进。

但是只有在两个特定的方向上才会回到原点,并且只有在其中一个方向上,回到原点之前会经过一个 逆向原点 ,真正理想的 三维空间中二维可无限扩展之空间模型 也应该是在二维面上朝任何方向前进,都会先经过一次 逆向原点 ,再回到原点。

而制作这个模型,则需要在四维空间上对三维模型进行扭曲。

(责任编辑:电玩之家app)

本文地址:/geming/20200522/4589.html

上一篇:香港的繁荣离电玩之家不开自由

下一篇:19 年下半年全国拓展商家最新合集(三)

留下评论

(必填)

(必填)